


## KMT32B

### Magnetic Angle Sensor

- AMR Sensor with 180° period
- high accuracy
- high resolution
- for the use at moderate field strengths
- TDFN- and SO8- package available
- ROHS & REACH compliant

The KMT32B is a magnetic field sensor based on the anisotropic magneto resistance effect, i.e. it is sensing the magnetic field direction independently on the magnetic field strength for applied field strengths  $H > 25$  kA/m. The sensor contains two parallel supplied Wheatstone bridges, which enclose a sensitive angle of 45 degrees.



### Features

- Contactless angular position, ideal for harsh environments
- Design optimized for linearity
- High accuracy
- Low cost, low power
- Self-diagnosis feature
- Attractive SMD packages
- User has complete control over signal evaluation
- Extended operating temperature range
- REACH & RoHS compliant (lead free)

A rotating magnetic field in the surface parallel to the chip (x-y plane) will therefore deliver two independent sinusoidal output signals, one following a  $\cos(2\alpha)$  and the second following a  $\sin(2\alpha)$  function,  $\alpha$  being the angle between sensor and field direction (see Figure 2).

The KMT32B magnetic field sensor is suited for high precision angle measurement applications at a regular field strength of  $H_0 \geq 25$  kA/m (generated for example with magnet 67.044 from Magnetfabrik Bonn at a distance of 5.2 mm at room temperature). With reduced accuracy, the sensor KMT32B may be used with a field strength of  $H_0 \geq 14$  kA/m (at room temperature; be aware of the influence of the earth magnetic field!). Most magnets show a decreasing field strength with temperature while the magnetic field direction is unchanged.

### Applications

- Absolute and incremental angle measurement
- Automotive (steering angle, torque)
- Robotics
- Camera positioning
- Potentiometer replacement
- Position measurement in medical applications
- Motor motion control

[CLICK HERE >](#)  
**CONNECT WITH A SPECIALIST**

## KMT32B

Magnetic Angle Sensor

## KMT32B

### Characteristic Values

| Parameter                                 | Symbol              | Condition      | Min         | Typ          | Max         | Unit   |
|-------------------------------------------|---------------------|----------------|-------------|--------------|-------------|--------|
| <b>A. Operating Limits</b>                |                     |                |             |              |             |        |
| Max. supply voltage                       | V <sub>CC,max</sub> |                |             |              | <b>10</b>   | V      |
| Max. current (single bridge)              | I <sub>CC,max</sub> |                |             |              | <b>4</b>    | mA     |
| Operating temperature                     | T <sub>op</sub>     |                | <b>-40</b>  |              | <b>+150</b> | °C     |
| Storage temperature                       | T <sub>st</sub>     |                | <b>-40</b>  |              | <b>+150</b> | °C     |
| <b>B. Sensor Specifications (T=25 °C)</b> |                     |                |             |              |             |        |
| Supply voltage                            | V <sub>CC</sub>     |                |             | <b>5</b>     |             | V      |
| Resistance (single bridge)                | R <sub>b</sub>      |                | <b>2400</b> | <b>3000</b>  | <b>3600</b> | Ω      |
| Output signal amplitude                   | V <sub>PEAK</sub>   | Condition A, B | <b>9</b>    | <b>11</b>    | <b>13</b>   | mV/V   |
| Offset voltage                            | V <sub>OFF</sub>    | Condition A, B | <b>-1</b>   | <b>0</b>     | <b>+1</b>   | mV/V   |
| Angular inaccuracy                        | Δα                  | Condition A, B |             | <b>0.05</b>  | <b>0.2</b>  | deg    |
| Angular hysteresis                        | ΔαH                 | Condition A, B |             |              | <b>0.1</b>  | deg    |
| <b>C. Sensor Specifications</b>           |                     |                |             |              |             |        |
| TC of amplitude                           | T <sub>CSV</sub>    | Condition A, C |             | <b>-0.35</b> |             | %/K    |
| TC of resistance                          | T <sub>CBR</sub>    | Condition A, C |             | <b>+0.35</b> |             | %/K    |
| TC of offset                              | T <sub>CVoff</sub>  | Condition A, C | <b>-4</b>   | <b>0</b>     | <b>+4</b>   | μV/V/K |

Stress above one or more of the limiting values may cause permanent damage to the device. Exposure to limiting values for extended periods may affect device reliability.

### Measurement Condition

| Parameter                             | Symbol          | Unit | Condition                          |
|---------------------------------------|-----------------|------|------------------------------------|
| <b>Condition A: Set Up Conditions</b> |                 |      |                                    |
| Ambient temperature                   | T               | °C   | T = 25 °C (unless otherwise noted) |
| Supply voltage                        | V <sub>CC</sub> | V    | V <sub>CC</sub> = 5 V              |
| Applied magnetic field                | H               | kA/m | H = 25 kA/m                        |

| <b>Condition B: Sensor Specifications (360° turn, V<sub>0,max</sub>&gt;0, V<sub>0,min</sub>&lt;0)</b> |                   |      |                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------|-------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output signal amplitude                                                                               | V <sub>PEAK</sub> | mV/V | V <sub>PEAK</sub> = (V <sub>0,max</sub> - V <sub>0,min</sub> )/2/V <sub>CC</sub>                                                                                                                                                                                                                     |
| Offset voltage                                                                                        | V <sub>OFF</sub>  | mV/V | V <sub>OFF</sub> = (V <sub>0,max</sub> + V <sub>0,min</sub> )/2/V <sub>CC</sub>                                                                                                                                                                                                                      |
| Angular inaccuracy                                                                                    | Δα                | deg  | Δα = MAX/ α <sub>0</sub> -α ; max. angular difference between actual field angle α <sub>0</sub> and measured angle α due to deviations from ideal sinusoidal characteristics, calculated from the third and fifth harmonics of the Fourier spectrum; offset voltage error contributions not included |
| Angular hysteresis                                                                                    | ΔαH               | deg  | ΔαH =  α <sub>left turn</sub> - α <sub>right turn</sub>  /angular difference between left and right turn                                                                                                                                                                                             |

## Measurement Condition

| Parameter                                                 | Symbol | Unit           | Condition                                                                                                                                  |
|-----------------------------------------------------------|--------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Condition C: Sensor Specifications (-25°C, +125°C)</b> |        |                |                                                                                                                                            |
| Ambient temperatures                                      | T      | °C             | $T_1 = -25 \text{ }^{\circ}\text{C}$ , $T_0 = +25 \text{ }^{\circ}\text{C}$ , $T_2 = +125 \text{ }^{\circ}\text{C}$                        |
| TC of amplitude                                           | TCSV   | %/K            | $TCV = \frac{1}{(T_2 - T_1)} \cdot \frac{\frac{\Delta Vn}{Vcc}(T_2) - \frac{\Delta Vn}{Vcc}(T_1)}{\frac{\Delta Vn}{Vcc}(T_1)} \cdot 100\%$ |
| TC of resistance                                          | TCBR   | %/K            | $TCR = \frac{1}{(T_2 - T_1)} \cdot \frac{R(T_2) - R(T_1)}{R(T_1)} \cdot 100\%$                                                             |
| TC of offset                                              | TCVoff | ( $\mu$ V/V)/K | $TCVoff = \frac{Voff(T_2) - Voff(T_1)}{(T_2 - T_1)}$                                                                                       |

## Block Diagram



Figure 1: Circuit Diagram for the KMT32B in the SO8-Package

## Typical Performance Curves

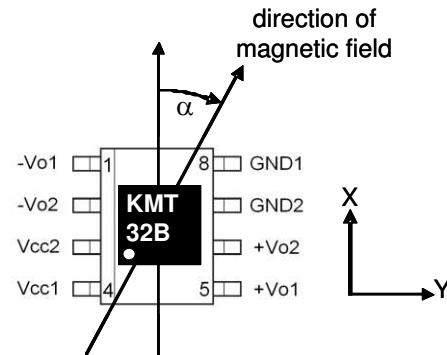
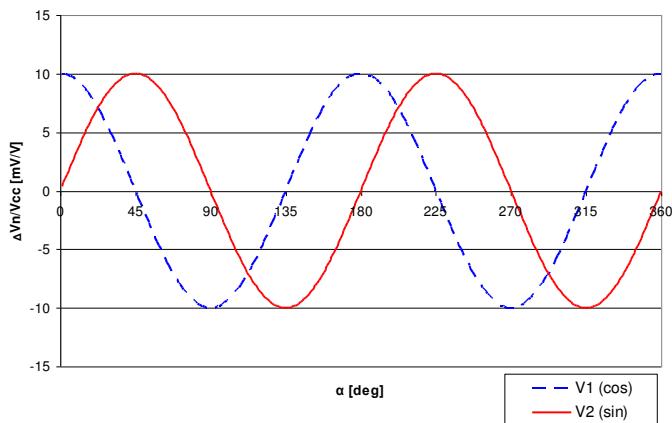
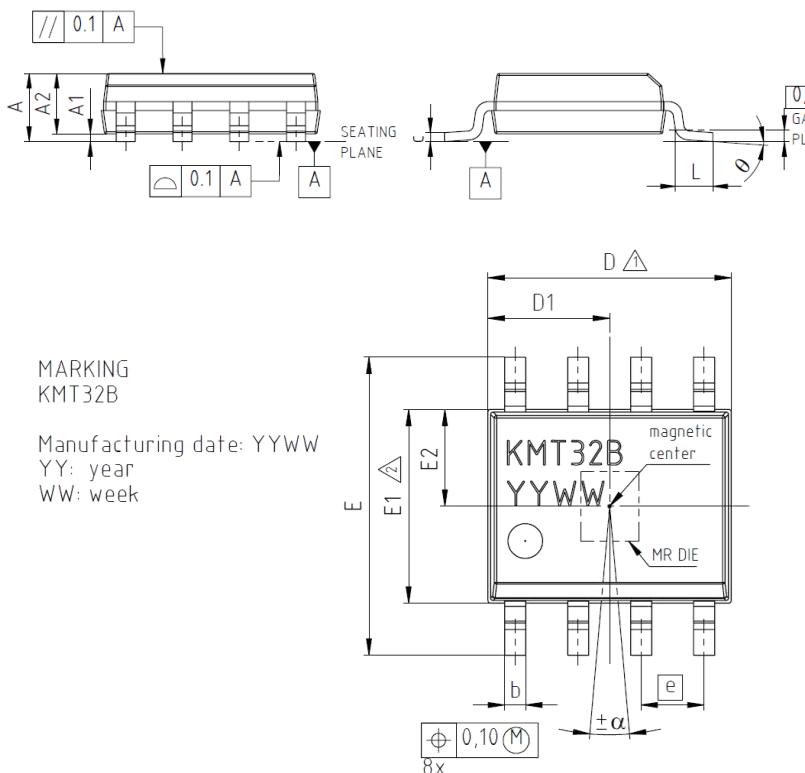




Figure 2: Characteristic curves for KMT32B (SO8, TDFN)

## KMT32B


Magnetic Angle Sensor

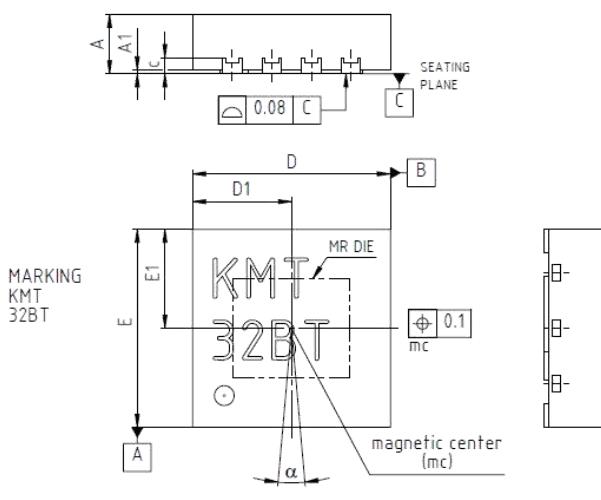
### Pin Assignment (SO8, TDFN)

| Pin (SO8) | Pin (TDFN) | Symbol    | Function                         |
|-----------|------------|-----------|----------------------------------|
| 1         | 7          | $-V_{o1}$ | negative output bridge 1         |
| 2         | 8          | $-V_{o2}$ | negative output bridge 2         |
| 3         | 1          | $V_{cc2}$ | positive supply voltage bridge 2 |
| 4         | 2          | $V_{cc1}$ | positive supply voltage bridge 1 |
| 5         | 3          | $+V_{o1}$ | positive output bridge 1         |
| 6         | 4          | $+V_{o2}$ | positive output bridge 2         |
| 7         | 5          | $GND_2$   | negative supply voltage bridge 2 |
| 8         | 6          | $GND_1$   | negative supply voltage bridge 1 |

### Packages

#### SO8




### Quality information

This product has been qualified in accordance with the Automotive Electronics Council (AEC) standard Q101 - Failure mechanism-based stress test for discrete semiconductor and is suitable for use in automotive applications.

## KMT32B

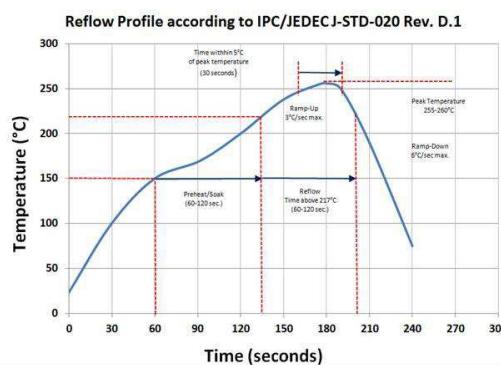
Magnetic Angle Sensor

**TDFN 2.5 x 2.5 x 0.75 mm<sup>3</sup>**



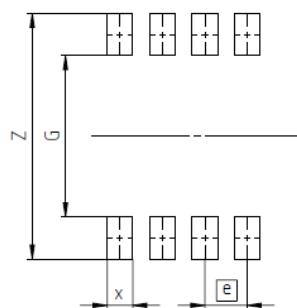
| DIMENSION MM |      |      |      |
|--------------|------|------|------|
| REF          | MIN. | NOM. | MAX. |
| A            | 0.70 | 0.75 | 0.80 |
| A1           | -    | -    | 0.05 |
| b            | 0.20 | 0.25 | 0.30 |
| c            | -    | 0.20 | -    |
| D            | 2.45 | 2.50 | 2.55 |
| D1           |      | 1.25 |      |
| D2           | 1.79 | 1.80 | 1.81 |
| E            | 2.45 | 2.50 | 2.55 |
| E1           | -    | 1.25 | -    |
| E2           | 1.29 | 1.30 | 1.31 |
| e            | -    | 0.50 | -    |
| F            | -    | 0.35 | -    |
| K            | -    | 0.30 | -    |
| L            | 0.25 | 0.30 | 0.35 |
| M            | -    | 0.60 | -    |
| N            | -    | 0.35 | -    |
| O            | -    | 0.50 | -    |
| $\alpha$     | -5°  | 0°   | 5°   |

### Quality information


This product has been qualified in accordance with the Automotive Electronics Council (AEC) standard Q101 - Failure mechanism-based stress test for discrete semiconductor.

### Solder Profile

#### KMT32BT/G-MRCO-016


Package: 8L TDFN 2.5 x 2.5

##### Solder Profile



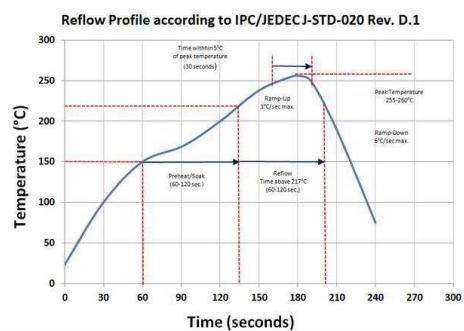
##### Recommended Land Pattern

##### RECOMMENDED LAND PATTERN

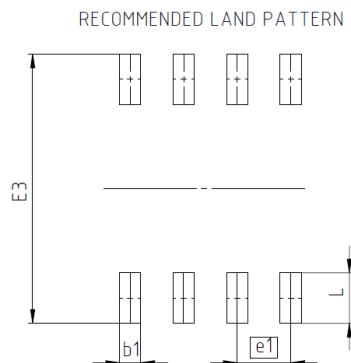


| DIMENSION MM |      |      |      |
|--------------|------|------|------|
| REF          | MIN. | NOM. | MAX. |
| X            | -    | 0.30 | -    |
| G            | 1.90 | -    | -    |
| Z            | -    | -    | 2.90 |
| e            | -    | 0.50 | -    |

Moisture Sensitivity Level for KMT32BT: MSL1 @ 260°C


## KMT32B

Magnetic Angle Sensor


### KMT32B/G-MRCO-015

Package: SO8

#### Solder Profile



#### Recommended Land Pattern



| DIM | Millimeter |      |      |
|-----|------------|------|------|
|     | min.       | typ. | max. |
| b1  | -          | 0.50 | -    |
| E3  | -          | 6.40 | -    |
| e1  | -          | 1.27 | -    |
| L   | -          | 1.20 | -    |

Moisture Sensitivity Level for KMT32B: MSL1 @ 260°C

#### Tape and Reel Packaging Information

| Description | Part#      | Reel size | Units/reel | Pin 1 orientation               | Note |
|-------------|------------|-----------|------------|---------------------------------|------|
| KMT32B/TD   | G-MRCO-016 | 7"        | 3,000      | Top-right of sprocket hole side |      |
| KMT32B/SO   | G-MRCO-016 | 13"       | 2,500      | Top-left of sprocket hole side  |      |

## KMT32B

Magnetic Angle Sensor

### Ordering Information

| Description         | Part Number |
|---------------------|-------------|
| KMT32B 8L SOIC ROHS | G-MRCO-015  |
| KMT32BT TDFN ROHS   | G-MRCO-016  |

[CLICK HERE ›](#)  
**CONNECT WITH A SPECIALIST**

**NORTH AMERICA**  
Tel +1 800 522 6752

**EUROPE**  
Tel +31 73 624 6999

**ASIA**  
Tel +86 0400 820 6015

**te.com/sensors**

TE Connectivity, TE, TE Connectivity (logo) and Every Connection Counts are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2021 TE Connectivity Corporation. All Rights Reserved.

Version 1 09/2023

