
AN4V 型集成电流传感器详细规范

AN4V 集成电流传感器详细规范

1 范围

本规范规定了AN4V集成电流传感器的详细要求。 本规范适用于AN4V集成电流传感器的通用要求、质量保证规定和试验方法等。

2 要求

2.1 总则

AN4V集成电流传感器(以下简称器件)应符合本规范的所有要求。

2.2 设计、结构和外形尺寸

2.2.1 器件标识

30 20 AN4V 10 PB产品型号 量程 安装方式 特性

2.2.2 工艺结构

器件采用塑封工艺。

2.2.3 封装形式

封装形式为塑封SOP-8。外壳为塑封非气密性封装。图1为外形尺寸。

<u>00</u>

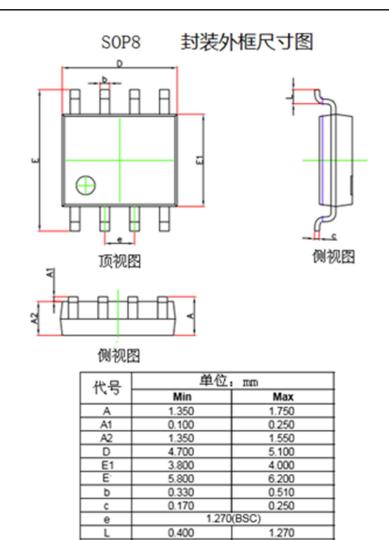


图1 外形尺寸

2.2.4 引出端排列

引出端排列如图2所示、应符合图2及表1的规定。

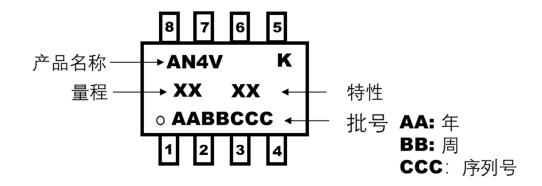


图2 引出端排列

表1 引线排列表

管脚序号	名称	描述
1,2	IP+	被测电流输入连接点(PCB电流导线截止至管脚,不能延进入塑
		封体下方)
3,4	IP-	被测电流输出连接点(PCB电流导线截止至管脚,不能延进入塑
		封体下方)
5	GND	芯片地
6	TEST	测试模式,建议通过1nF接芯片地
7	V _{OUT}	正比于被测电流的电压输出
8	V _{CC}	芯片供电电源

2.2.5 电路框图

电路框图应符合图3的规定。

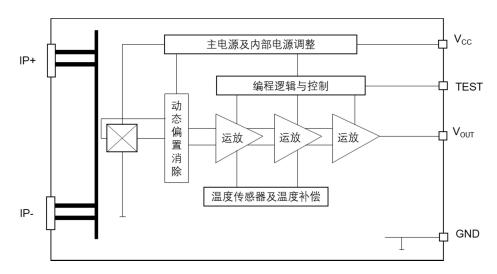


图3 电路框图

2.2.6 绝对最大额定值

绝对最大额定值如下表2:

表2 绝对最大额定值

代号	定义描述	条件说明	最大额定值	单位
V_{CC}	芯片供电电压		6.0	V
V _{RCC}	逆向供电电压		-0.3	V
V _{OUT}	最大输出电压		6.0	V
V _{ROUT}	逆向输出电压		-0.3	V
I _{OUT(Source)}	VouT输出电流能力		30	mA
I _{OUT(Sink)}	VouT吸收电流能力		30	mA
T _{J (MAX)}	最大结温		165	$^{\circ}$
$T_{\mathbf{A}}$	正常工作温度范围		-55~125	$^{\circ}$
T _{STG}	存储温度范围		-55~165	$^{\circ}$
V _{ISO}	介电强度测试电压	管脚1-4与管脚5-8之	2100	VAC
		间, 50Hz, 10s, 1mA		
ESD _{HRM}	人体放静电保护		2000	V

2.2.7 设计工作参数

设计工作参数如下表3,该表中参数为设计保证,不进行测试:

表3 设计工作参数

代号	定义参数描述	测试条件	下限	典型值	上限	单位
		AN4V 10 PB00	-10		10	
I_P	额定被测电流范围	AN4V 20 PB00	-20		20	A
		AN4V 30 PB00	-30		30	
V _{CC}	芯片供电电压	C _{BYP} =100nF	4.5	5.0	5.5	V
I_{CC}	待机电流	V_{CC} = 5.0 V,输出无阻性负载		12	14	mA
C_{L}	输出容性负载				10	nF
R_{L}	输出带负载能力		6			kΩ
V _{NOISE(PP)}	噪声	$T_A=25$ °C, $C_L=1$ nF		0.15		A_{RMS}
t _r	响应时间	$I = I_P, T_A = 25$ °C, $C_L = 1$ nF		5	6	μS
BW	频带宽度	$-3 \text{ dB}, T_A = 25^{\circ}\text{C};$		100		kHz
R _{PRIMARY}	原边电流导线阻抗	T _A =25°C,无焊锡		0.8		$m\Omega$

2.3 引线材料和镀涂层

引线材料采用铜材料,镀涂采用镀锡。

- 2.4 电特性
- 2. 4. 1 电特性参数要求

除另有规定外,电特性应按表4的规定,并适用于全工作温度范围。老炼和寿命试验参数变化要求见表 4规定。

表4 电气性能参数(若无其他说明,下述参数满足以下 $C_L=1nF, V_{CC}=5V$)

定义参数	测试条件		下限	典型值	上限	单位	测试方法
零点输出	AN4V xxx PB00	$I_P = 0$, $T_A = 25$ °C	V _{CC} /2-0.05	V _{CC} /2	$V_{\rm CC}$ /2+0.05	V	A2.1
	AN4V 10 PB00, T _A =25°C		192	200	208		
灵敏度10	AN4V 20 PB00, T _A =25°C		96	100	104		A2.2
	AN4V 30 PB00	, T _A =25°C	63	66.7	69		
	AN4V 10 PB00, T _A =-55°C~125°C		-0.2	±0.1	0.2		
热零点漂移	AN4V 20 PB00, T _A =-55°C~125°C		-0.2	±0.1	0.2	mV/℃	A2.3
	AN4V 30 PB00, T _A	-0.2	±0.1	0.2			
	AN4V 10 PB00, T _A =-55°C~125°C		-0.3	±0.2	0.3		
热灵敏度漂 移 ¹⁾	AN4V 20 PB00, T _A =-55°C~125°C		-0.3	±0.2	0.3	mV/℃	A2.4
移	AN4V 30 PB00, T _A	=-55°C~125°C	-0.3	±0.2	0.3		
线性度	T _A =25°C		-1	±0.5	1	%	A2.5
总精度误差	全量程测试,T _A =25℃		-2	±1	2	%	A2.6
$^{1)}$ 测试时, $I_{ m P}$ 持续时间< $I_{ m S}$ 。							

2.4.2 老炼和寿命试验电参数允许变化

老炼和寿命试验后电参数应满足表4要求。

2.5 电测试要求

电测试要求应为表7所规定的分组,各分组的电测试应按表5的规定进行。

表5 电测试要求

测试要求	分 组 (按 A 组检验表)
电测试 (老炼前)	1, 4
终点电测试(老炼后)	1 ^a , 2, 3, 4 ^a , 5, 6
A 组试验电测试	1, 2, 3, 4, 5, 6
^a 该分组计算参数变化和 PDA。	
ь 该分组计算参数变化。	

3 质量保证规定

3.1 抽样和检验

除另有规定外,抽样和检验程序应按本规范的规定。

3.2 筛选

在质量一致性检验之前,全部器件应按本规范表6的规定进行筛选。除另有规定外,表中采用的方法指中的试验方法。

表6 筛洗

		祝0 师起	
序号	试验	方法	条件
1	温度循环	_	-55℃125℃, 50 循环
2	编序列号	按详细规范	_
3	老炼前电测试	按详细规范	_
4	老炼	_	125℃, 160h
5	老炼后电测试	按详细规范	_
6	终点电测试	按详细规范	_
7	外部目检	_	_

3.2.1 老炼试验

- a) 试验电路按本规范附录 A 图 A1, V_{CC}=5V;
- b) $T_A=125^{\circ}C, t=160h_{\circ}$
- 3.2.2 电测试

电测试和最终电测试按本规范表5的规定进行。

- 3.3 质量一致性检验(QCI)
- 3.3.1 概述

质量一致性检验分为A组检验(每检验批)。

116 (0)

3.3.2 A组检验

A组检验应按本规范表7的规定进行。一个样本可用作所有分组试验,当所要求的样本大小超过批量时,应100%检验。

分组 试验 抽样数 (接收数) 1 25℃下静态测试 116 (0) 2 125℃下静态测试 116 (0) 116 (0) 3 -55℃下静态测试 4 25℃下动态测试 116 (0) 116 (0) 5 125℃下动态测试

-55℃下动态测试

表7 A组检验

4 说明事项

4.1 订购文件中应明确的内容

6

合同和定货单的内容应至少规定下列内容:

- a) 规范的名称、编号和颁布日期;
- b) PIN(适用时)
- c) 包装要求;

4.2 使用操作

器件必须采取防静电措施进行使用操作,推荐下列操作措施:

- a) 器件使用前应 85℃高温烘烤 48h, 并在 6h 内使用;
- b) 器件应在防静电的工作台上操作;
- c) 试验设备和器具应接地;
- d) 不能触摸电路引线;
- e) 器件应存放在防静电材料制成的容器内;
- f) 测试、使用及流转过程中,应避免使用能引起静电的塑料、橡胶、丝织物等;
- g) 操作环境的相对湿度应尽可能保持在 30%以上。

4.3 失效处理

失效处理按如下规定进行:

- a) 当外引线严重锈蚀,短、断路,接触不良,功能不正常视为严重失效;
- b) 对于严重失效,要进行失效分析,并提供失效分析报告。分析结果若与批次有关,则该批电路不得提交。

4.4 其他说明

器件贮存期为3年,在贮存期内性能指标符合本规范要求,贮存条件应为:

- a. 器件在真空密封包装内储存温度为10℃~40℃,相对湿度小于等于70%。
- b. 在焊接之前,要求烘焙,器件必须在125±5℃中烘焙24小时。

AN4V PB00

注:	因装器件的容器不能承受高于50	℃ 的温度,	所以器件必须置于另外的托盘中进行烘焙。	

附录A (规范性附录) 测试方法

除另有协议外,各项电参数的测试方法按下列规定进行。

A.1 测试线路图

本测试的目的是测定集成电流传感器AN4V的电性能参数,电参数测试连接图如图A1。

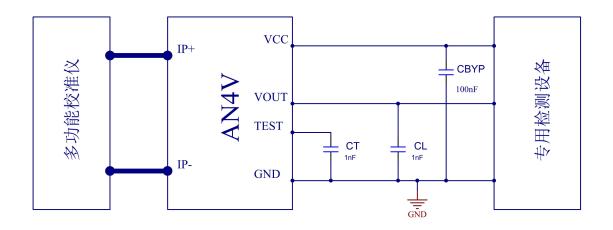


图 A.1 测试连接图 1

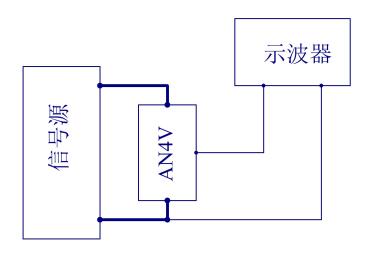


图 A.2 测试连接图 2

A. 2 测试方法

A2.1 零点输出

a. 定义

在被测量电流为零的情况下, 传感器的输出信号为零点输出。

b. 测量仪器和连接方法

仪器:

电流传感器专用检测设备、数字万用表。

连接:

连接方式如图 A.1 所示。

c. 测量方法

传感器接通电源后用数字万用表测量传感器的零点输出值 Y₀。

A2.2 灵敏度

a. 定义

传感器的输出信号与零点输出值之差,与被测电流的比值,单位为 mV/A。

b. 测量仪器和连接方法

仪器:

多功能校准仪;

数字万用表;

霍尔传感器专用检测设备。

连接:

连接方式如图 A.1 所示。

c. 测量方法

传感器接通电源后,记录下传感器零点输出 Y₀。

加上被测量信号后,当信号达到设定值 IF 时,记录传感器的输出信号值 Y_F ,则灵敏度范围为:

Sens =
$$(Y_F - Y_\theta) / I_F$$
(A.1)

式中:

Yo——零点输出;

Y----对应额定信号输出值;

 I_r ——设定电流;

Sens——灵敏度。

A2.3 热零点漂移

a. 定义

传感器环境温度每变化 1℃,零点输出的变化值,单位为 mV/℃。

d. 测量仪器和连接方法

仪器:

- a) 高低温两用箱;
- b) 霍尔传感器专用检测设备;

连接:

连接方式如图 A.1 所示。

b. 测量方法

接通传感器电源后,记录室温下传感器的零点输出值 Y₀;

把传感器放入处于上限+125℃(+150℃)或下限-55℃高低温两用箱中大于 1h 后,记录传感器的零点输出值 Y_{0i} 。

$$\Delta Voq = (Y_{0i} Y_0) / \Delta T \qquad(A.2)$$

式中:

 Y_{0i} ——上限或下限工作温度下所测得的零点输出值;

 Y_0 ____室温下所测得的零点输出值;

 ΔT ——上限或下限工作温度与室温的温度差值;

ΔVoq——热零点漂移。

A2.4 热灵敏度漂移

a. 定义

传感器环境温度每变化 1℃,灵敏度输出的变化值与被测电流的比值,单位为 mV/A/℃。

e. 测量仪器和连接方法

仪器:

- a) 高低温两用箱;
- b) 霍尔传感器专用检测设备;
- b. 测量方法

接通传感器电源后,记录室温下传感器的零点输出值 Y₀;

把传感器放入处于上限+125℃(+150℃)或下限-55℃高低温两用箱中大于 lh 后,记录传感器的零点输出值 Y_{0i} 。

$$\Delta Sens = (Y_F - Y_0) / I_F / \Delta T \qquad (A.3)$$

式中:

 Y_{0i} ——上限或下限工作温度下所测得的零点输出值;

 Y_0 _____室温下所测得的零点输出值;

AN4V PB00

ΔSens——灵敏度温漂;

 ΔT ——上限或下限工作温度与室温的温度差值。

A2.5 线性度

a. 定义

线性度是衡量传感器的实际特性符合直线的程度,由于实际特性通常是一条曲线,它与理论特性间有一个偏差,这个偏差的大小反应了实际特性的非线性的程度,故可用非线性误差来表示测量系统的线性度,测量系统的线性度定义为:

$$\gamma_L = \frac{|\Delta L \max|}{\overline{Y}_{FS}}$$
 (A.4)

式中:

 γ_L ——线性度(或非线性度误差);

 $\Delta L \max$ 实际特性与理论特性最大偏差;

 $\overset{-}{Y}_{FS}$ ——传感器额定输出的平均值。

b. 测量仪器及连接方法

仪器:

多功能校准仪:

数字万用表;

霍尔传感器专用检测设备。

连接:

连接方式如图 A.1 所示。

- c. 最小二乘线性度法
 - a) 示值校准

在传感器全量程范围内每 20%额定信号值为一个测试点,测试从测量范围下限开始,按规定的校准点平衡地加负荷,在每个校准点上加负荷,负荷稳定后读取传感器输出值,一直到测量范围的上限(定义为正行程)。

将负荷设置到上限值,此次读取的输出作为反行程的初始值,按规定的校准点平衡地减负荷,负荷稳定后读取传感器输出值一直到测量范围的下限(定义为反行程)。

b) 工作直线

传感器的工作直线可根据校准数据采用最小二乘法来确定。其特性方程为:

其中: a、b 分别为工作直线的截距和斜率,根据校准数据可按下述公式求得:

$$a = \frac{\sum_{i=1}^{k} x_{i}^{2} \sum_{i=1}^{k} y_{i} - \sum_{i=1}^{k} x_{i} \sum_{i=1}^{k} x_{i} y_{i}}{m \sum_{i=1}^{k} x_{i}^{2} - (\sum_{i=1}^{k} x_{i})^{2}}$$

$$b = \frac{k \sum_{i=1}^{k} x_{i} y_{i} - \sum_{i=1}^{k} x_{i} \sum_{i=1}^{k} y_{i}}{k \sum_{i=1}^{k} x_{i}^{2} - (\sum_{i=1}^{k} x_{i})^{2}}$$
(A. 6)

式中:

 x_i ——第i个校准点的输入平均值;

 v_i ——第i个校准点的输出平均值;

k ——测量范围内所取校准点数。

c) 线性度计算

$$\gamma_L = \pm \frac{\Delta L \max}{\overline{Y}_{FS}} \times 100\%$$
 (A.8)

式中:

 $\Delta L \max$ ____校准曲线与拟合直线之间的最大偏差;

 $\overset{-}{Y}_{FS}$ ——传感器额定输出值的平均值。

A2.6 精度

a. 定义

传感器的精度是指传感器在其测量范围内,它的基本误差(包括随机误差和系统误差)与传感器额定输出值 Y_{FS} 的百分比值来表示的。

b. 测量仪器及连接方法

仪器:

多功能校准仪;

数字万用表;

霍尔传感器专用检测设备。

连接:

连接方式如图 A.1 所示。

c. 计算方法

传感器的精度在静态校准后进行计算,其计算公式如下:

$$A = \pm \frac{3\overline{\sigma} + \Delta Y \max}{\overline{Y}_{ES}} \times 100\% \qquad (A.9)$$

式中:

 σ ——重复性平均标准偏差;

 \overline{Y}_{FS} ——传感器额定输出值的平均值。

重复性平均值标准偏差 σ 用极差法计算如下:

a) 总的平均极差 \overline{W} 按以下公式计算:

$$\overline{W} = \frac{\sum_{i=1}^{k} W_{ci} + \sum_{i=1}^{k} W_{fi}}{2K}$$
 (A.10)

式中:

 W_{ci} ——第i个校准点正行程校准数据的极差;

 W_{fi} ______ 第i个校准点反行程校准数据的极差。

b) 传感器重复性平均标准偏差 σ :

$$\overline{\sigma} = \frac{\overline{W}}{d_R}$$
 (A.11)

式中:

d_R____极差系数,取1.69。