

H(T)U(F)3500 SERIES

Analog Relative Humidity module with Temperature output

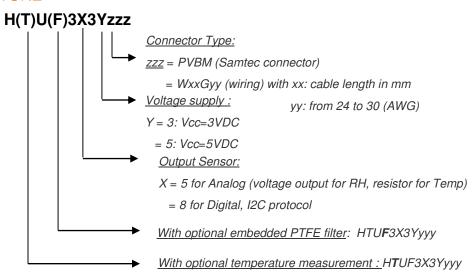
SPECIFICATIONS

- Compact plug and play module with no external component required
- Can operate under 5VDC or 3VDC
- Relative Humidity and Temperature Analog Output
- Full interchangeability. No calibration required
- Can operate under 5VDC or 3VDC
- Low power consumption
- Fast response time

Based on the new humidity sensor HTU21P, HTU3500 Series are dedicated humidity and temperature plug and play transducer designed for OEM applications where reliable and accurate measurements are needed. Direct interface with a micro-controller is made possible with the modules humidity linear voltage and direct NTC outputs. The HTU3500 Series are designed for high volume and demanding applications where power consumption is critical.

Optional PTFE filter/membrane (F) protects HTU3500 Series modules analog humidity modules with temperature output against dust, water immersion as well as against contamination by particles. PTFE filter/membrane preserves a high response time. Several connectors are proposed. 5VDC or 3VDC power supply products are available.

HU3500 – analog Humidity sensor only – can be proposed

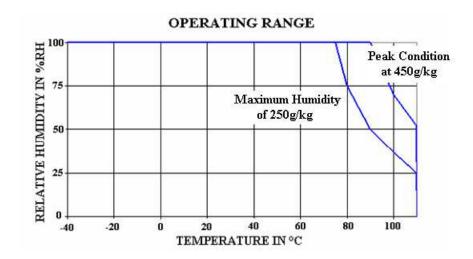

FEATURES

- Full interchangeability with no calibration required in standard conditions
- Instantaneous desaturation after long periods in saturation phase
- Analog output
- Demonstrated reliability and long term stability
- · Reliability not affected by repeated condensation
- HU3500 analog humidity sensor only can be proposed

APPLICATIONS

- Home appliance
- Medical
- Printers
- Humidifier

NOMENCLATURE


PERFORMANCE SPECS

MAXIMUM RATINGS

Ratings		Symbol	Value	Unit
Storage Temperature		T _{stg}	-40 to 125	°C
Complex Voltage (Dools)	HTU3533 products	V _{cc}	16V	V_{dc}
Supply Voltage (Peak)	HTU3535 products	Vcc	16V	V _{dc}
Humidity Operating Range)	RH	0 to 100	%RH
Temperature Operating Ra	ange	Ta	-40 to +85	°C
\/DD : 0\/D	HTU3533 products		-0.3 to 3.6V	V
VDD to GND	HTU3535 products		-16 to 16V	V
Input current on any pin			-10 to +10	mA

Peak conditions: less than 10% of the operating time

Exposure to absolute maximum rating conditions for extended periods may affect the sensor reliability.

ELECTRICAL AND GENERAL ITEMS

HTU35Y3

Characteristics	Symbol	Min	Тур	Max	Unit
Voltage Supply (1) (2)	Vcc	2.85	3.0	3.15	V _{dc}
Nominal Output @55%RH	V_{out}		1.490		V
Humidity Average Sensitivity	ΔmV/RH	-	+16	-	mV/%RH
Current consumption	Icc	-	1.0	1.2	mA dc

HTU35Y5

Characteristics	Symbol	Min	Тур	Max	Unit
Voltage Supply (1) (2)	V _{cc}	4.75	5	5.25	V_{dc}
Nominal Output @55%RH	V_{out}	2.401	2.480	2.559	V
Humidity Average Sensitivity	ΔmV/RH	-	+26	-	mV/%RH
Current consumption	Icc	-	1.2	1.5	mA dc

⁽¹⁾ Module is ratiometric to voltage supply

Maximum power supply ramp up time to VCC should be less than 20ms

SENSOR PERFORMANCE

ELECTRICAL CHARACTERISTICS

(@T=23°C, $R_L>1M\Omega$ unless otherwise noted)

Humidity Characteristics	Symbol	Min	Тур	Max	Unit
Humidity Measuring Range	RH	0		100	%RH
Relative Humidity Accuracy (20% to 80%RH)			±2	See graph	%RH
Temperature coefficient (10°C to 50°C)	Tcc			-0.15	%RH/°C
Recovery time after 150 hours of condensation	t		10		S
Humidity hysteresis			+/-1		%RH
Output impedance	Z			50	Ω
Sink current capability (R _{L_Min} = 8 kOhms) (1)	I			1	mA
Warm up time (90% of signal)	t _w		150		ms
Time Constant (at 63% of signal) 33%RH to 75%RH (2)	τ		5	10	S

⁽¹⁾ Conditions of sir (2) At 1m/s air flow Conditions of sink current: Vout + 0.054V (3%RH) at Vout = 0.600 V (Vout min)

Temperature Characteristics*	Symbol	Min	Тур	Max	Unit
Nominal resistance @ 25°C	R	9.9	10	10.1	kΩ
Beta value : B25/50	В	3346	3380	3414	K
Temperature measuring range	Ta	-40		+80	°C
Nominal Resistance Tolerance at 25°C	Rn		1		%
B value tolerance	В		1		%
Time Constant	Т		10		s

^{*} Except for low temperatures

 ⁽¹⁾ Module is ratiometric to voltage supply
 (2) Maximum power supply ramp up time to VCC should be less than 20ms

POWER SUPPLY OPTION OF HTU3500 SERIES AT 3VDC OR AT 5VDC

At $3V_{DC}$ or at $5V_{DC}$ power supply, there is no measurable impact of type of powering on temperature and RH accuracy.

HUMIDITY LOOK-UP TABLES

HTU3535 Modeled Voltage Output				
F	Reference Output	Values (Vcc	= 5V)	
0	Vout (mV)	RH (%)	Vout (mV)	
10	1235	55	2480	
15	1390	60	2605	
20	1540	65	2730	
25	1685	70	2860	
30	1825	75	2990	
35	1960	80	3125	
40	2090	85	3260	
45	2220	90	3400	
50	2350	95	3530	

F	Reference Output Values (Vcc = 3V)			
RH (%)	Vout (mV)	RH (%)	Vout (mV)	
10	740	55	1490	
15	835	60	1565	
20	925	65	1640	
25	1010	70	1715	
30	1095	75	1795	
35	1175	80	1875	
40	1255	85	1955	
45	1330	90	2040	
50	1410	95	2120	

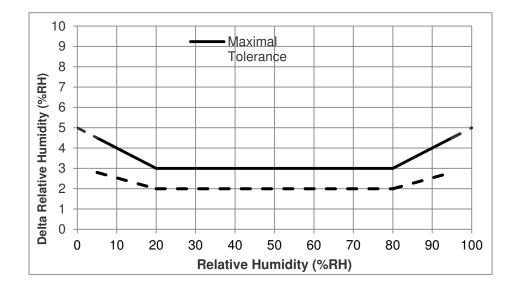
HTU3533 Modeled Voltage Output

POLYNOMIAL EQUATIONS

 $V_{out} = 8.43E^{-4} RH^3 - 0.1485 RH^2 + 34.16 RH + 909$ $RH = -1.564E^{-9}V_{out}^3 + 1.205E^{-5}V_{out}^2 + 8.22E^{-3}V_{out} - 15.6$ with V_{out} in mV and RH in %

LINEAR EQUATIONS

 $V_{out} = 26.23 \text{ RH} + 1032$ $RH = 0.03812 V_{out} - 39.36$ with V_{out} in mV and RH in %


POLYNOMIAL EQUATIONS

 $V_{out} = 5.05E^{-4} RH^3 - 8.91 E^{-2} RH^2 + 2.05 E^1 RH + 5.45 E^2$ $RH = -7,23 E^{-9}V_{out}^3 + 3,34 E^{-5}V_{out}^2 + 1,37 E^{-2}V_{out} - 15.6$ with V_{out} in mV and RH in %

LINEAR EQUATIONS

 $V_{out} = 15.94 \text{ RH} + 606$ $RH = 0.0627 V_{out} - 37.969$ with V_{out} in mV and RH in %

RELATIVE HUMIDITY ERROR BUDGET CONDITIONS AT 25°C

TEMPERATURE COEFFICIENT COMPENSATION EQUATION

For other temperatures than 25°C, the following temperature coefficient compensation equation can be used and will guarantee Relative Humidity accuracy given in table1, from 0°C to 80°C:

$$RH_{compensatedT} = RH_{actualT} + f(T)$$

RHactualT Ambient humidity in %RH, computed from HTU21D(F) sensor
Tactual Humidity cell temperature in °C, computed from HTU21D(F) sensor

f(T) RH correction (in %RH) is a linear function of the temperature T (°C) as described

below:

f(T) = -0.15 * (25 - T)

TEMPERATURE

Temperature Characteristics	Symbol	Min	Тур	Max	Unit
Nominal resistance @ 25°C	R	9.9	10	10.1	kΩ
Beta value : B25/50	В	3346	3380	3414	K
Temperature measuring range	Ta	-40		110	°C
Nominal Resistance Tolerance at 25°C	Rn		1		%
B value tolerance	В		1		%
Time Constant	Т		10		s

TYPICAL TEMPERATURE OUTPUT

Depending on the needed temperature measurement range and associated accuracy, we suggest two methods to access to the NTC resistance values.

$$R_T = R_N \times e^{\beta \left(\frac{1}{T} - \frac{1}{T_N}\right)}$$

 R_T NTC resistance in Ω at temperature T in K

 R_N NTC resistance in Ω at rated temperature T in K

T, T_N Temperature in K

β Beta value, material specific constant of NTC

e Base of natural logarithm (e=2.71828)

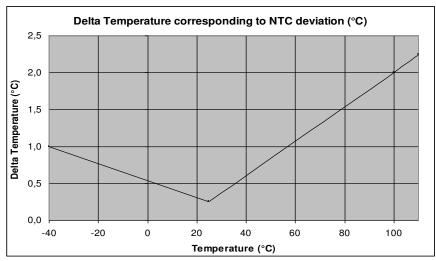
- \odot The exponential relation only roughly describes the actual characteristic of an NTC thermistor can, however, as the material parameter β in reality also depend on temperature. So this approach is suitable for describing a restricted range around the rated temperature or resistance with sufficient accuracy.
- ② For practical applications, a more precise description of the real R/T curve may be required. Either more complicated approaches (e.g. the Steinhart-Hart equation) are used or the resistance/temperature relation as given in tabulation form. The below table has been experimentally determined with utmost accuracy for temperature increments of 1 degree.

Actual values may also be influenced by inherent self-heating properties of NTCs. Please refer to MEAS-France Application Note HPC106 "Low power NTC measurement

TEMPERATURE LOOK-UP TABLE

Temp	R			
(°C)	(Ω)			
-40	195652			
-39	184917			
-38	174845			
-37	165391			
-36	156513			
-35	148171			
-34	140330			
-33	132958			
-32	126022			
-31	119494			
-30	113347			
-29	107565			
-28	102116			
-27	96978			
-26	92132			
-25	87559			
-24	83242			
-23	79166			
-22	75316			
-21	71677			
-20	68237			
-19	64991			
-18	61919			
-17	59011			
-16	56258			
-15	53650			
-14	51178			
-13	48835			
-12	46613			
-11	44506			
-10	42506			
-9	40600			
-8	38791			
-7	37073			
-6	35442			
-5	33892			
-4	32420			
-3	31020			
-2	29689			
-1	28423			

Temp	R
(°C)	(Ω)
0	27219
1	26076
2	24988
3	23951
4	22963
5	22021
6	21123
7	20267
8	19450
9	18670
10	17926
11	17214
12	16534
13	15886
14	15266
15	14674
16	14108
17	13566
18	13049
19	12554
20	12081
21	11628
22	11195
23	10780
24	10382
25	10000
26	9634
27	9284
28	8947
29	8624
30	8315
31	8018
32	7734
33	7461
34	7199
35	6948
36	6707
37	6475
38	6253


39

6039

1		
Temp	R	
(°C)	(Ω)	
40	5834	
41	5636	
42	5445	
43	5262	
44	5086	
45	4917	
46	4754	
47	4597	
48	4446	
49	4301	
50	4161	
51	4026	
52	3896	
53	3771	
54	3651	
55	3535	
56	3423	
57	3315	
58	3211	
59	3111	
60	3014	
61	2922	
62	2834	
63	2748	
64	2666	
65	2586	
66	2509	
67	2435	
68	2364	
69	2294	
70	2228	
71	2163	
72	2100	
73	2040	
74	1981	
75	1925	
76	1870	
77	1817	
78	1766	
79	1716	

Temp	R	
(°C)	(Ω)	
80	1669	
81	1622	
82	1578	
83	1535	
84	1493	
85	1452	
86	1413	
87	1375	
88	1338	
89	1303	
90	1268	
91	1234	
92	1202	
93	1170	
94	1139	
95	1110	
96	1081	
97	1053	
98	1026	
99	999	
100	974	
101	949	
102	925	
103	902	
104	880	
105	858	
106	837	
107	816	
108	796	
109	777	
110	758	

TEMPERATURE ERROR BUDGET

0.1°C tolerance on Resistance Measurement

STEINHART-HART COEFFICIENTS

According to the equation below, the Steinhart-Hart coefficients for the operating temperature range for HTU3500 products thermistor are:

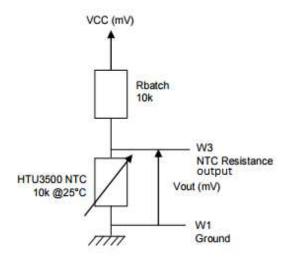
$$\frac{1}{T} = a + b * \ln(R) + C * \ln(R) * \ln(R) * \ln(R)$$

R NTC resistance in Ω at temperature T in K

T Temperature in K

a Constant value (a= 8.61393E-04)

b Constant value (b= 2.56377E-04)


c Constant value (c= 1.68055E-07)

TEMPERATURE INTERFACE CIRCUIT

Concerning the temperature sensor of the HTU3500 Series products, the following measuring method described below is based on a voltage bridge divider circuit. It uses only one resistor component (Rbatch) at 1% to design HTU3500 temperature sensor interfacing circuit.

Rbatch is chosen to be equal to NTC @25°C to get: Vout = Vcc/2 @25°C.

The proposal method connects Rbatch to Vcc and NTC to Ground. It leads to a negative slope characteristic (Pull-Up Configuration).

$V_{OUT}(mV) =$	$Vcc(mV)*NTC_{HTU3500}($	(Ω)
	$\overline{R_{batch}(\Omega) + NTC_{HTU3500}}$	$\overline{(\Omega)}$

		products (VCC=3VDC)	products (VCC=5VDC)
Temperature (°C)	Resistance (Ω)	Pull-Up Configuration Vout (mV)	Pull-Up Configuration Vout (mV)
-40	195652	2854	4757
-30	113347	2757	4595
-20	68237	2617	4361
-10	42506	2429	4048
0	27219	2194	3657
10	17926	1926	3210
20	12081	1641	2736
25	10000	1500	2500
30	8315	1362	2270
40	5834	1105	1842
50	4161	882	1469
60	3014	695	1158
70	2228	547	911
80	1669	429	665
85	1452	380	634

For HTU3533 For HTU3535

Storage Conditions and Handling Instructions

It is recommended to store HTU3500 Series sensor in its original packaging at following conditions: Temperature shall be in the range of -40°C – 125°C

APPLICATION: DEW POINT TEMPERATURE MEASUREMENT

The **dew point** is the temperature at which the water vapor in the air becomes saturated and condensation begins.

The dew point is associated with relative humidity. A high relative humidity indicates that the dew point is closer to the current air temperature. Relative humidity of 100% indicates that the dew point is equal to the current temperature (and the air is maximally saturated with water). When the dew point stays constant and temperature increases, relative humidity will decrease.

Dew point temperature of the air is calculated using Ambient Relative Humidity and Temperature measurements from HTU3500 Series sensor with following formulas given below

Partial Pressure (PP_{Tamb}) formula from Ambient Temperature:

$$PP_{Tamb} = 10^{\left[A - \frac{B}{(Tamb + C)}\right]}$$

Dew point Temperature (T_d) formula from Partial Pressure (PP_{Tamb}):

$$T_{d} = - \left[\frac{B}{\log_{10} \left(RH_{amb} \times \frac{PP_{Tamb}}{100} \right) - A} + C \right]$$

 PP_{Tamb} Partial Pressure in mmHg at ambient temperature (T_{amb})

PP_{Tamb}
RH_{amb}
T_{amb}
T_d
A, B, C Ambient humidity in %RH, computed from HTU3500 Series sensor Humidity cell temperature in °C, computed from HTU3500 Series sensor

Calculated Dew Point in °C

Constants: A=8.1332; B=1762.39; C=235.66

CONNECTING AND MECHANICAL CHARACTERISTRICS

CONNECTING CHARACTERISTICS

Connector Type*	Symbol	Overview	Connector Pitch	Mating Connector
Medium Male Connector (1) (2) (1.91 mm – 0.075 in long)	PVBM	1 2 1 6 5	(2,00) .0787 (2,00) .0787 (3,50 × 0,50) .020 × .020	Direct Soldering (through hole)

^{*} For alternate connector type, please contact factory.

Pin Out Assignment

N°	Function
1/8	Ground
2/7	Vcc – Voltage Supply
3/6	Tout - Temperature
4/5	RHout – Relative Humidity

WIRING CHARACTERISTICS

Connector Type	Symbol	Overview	More information*	Remote Mating Connector*
N/A	WxxGyy		Wxx: Wiring cable length* in mm Gyy: Wiring cable type* (from AWG 24 to 30):	N/A

^{*} On request, please contact factory.

⁽¹⁾ For board-to-board mounting, we suggest wave soldering.

⁽²⁾ Pins are connected by twos.

Pin Out Assignment (with wires)

N°	Colour	Function
1	Black	Ground
2	Red	Vcc – Voltage Supply
3	Brown	Tout - Temperature
4	Yellow	RHout – Relative Humidity

RESISTANCE TO PHYSICAL AND CHEMICAL STRESSES

HTU3500 series modules have been tested according to table below:

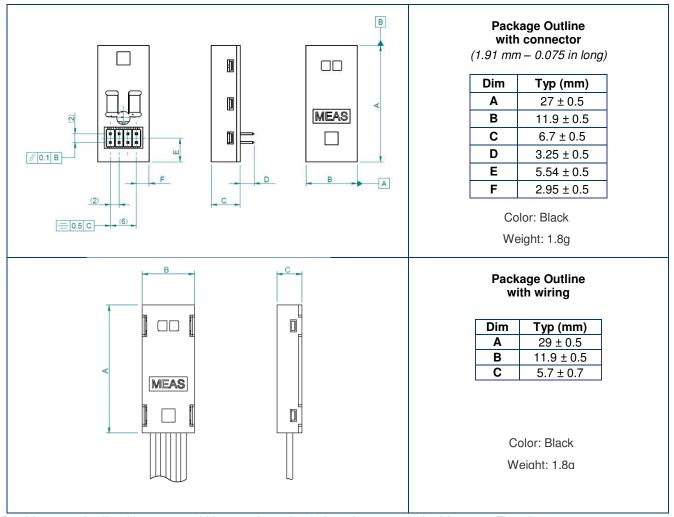
Environment	Standard	Results
Salt atmosphere	JESD22-A107-A	Within specification
Temperature cycling	-20°C / +85°C, 168 hours	Within specification
Thermal shocks	-20°C / +85°C, 500 cycles	Within specification
High temperature / Humidity operating life	93%RH / +60°C, 168 hours	Within specification
Resistance to immersion into water	Ambient temperature	Within specification
Low temperature storage	-20°C, 500 hours	Within specification
High temperature storage	+85°C, 500 hours	Within specification
ESD immunity	JEDEC JESD22-A114 JEDEC JESD22-A115	Within specification* Within specification**

^{*} JEDEC JESD22-A114 method for connections & open window (Human Body Model at ±8kV powered and unpowered)

HTU3500 Series are protected against reverse polarity.

HTU3500 Series are not light sensitive

ENVIRONMENTAL AND RECYCLING


HTU3500 series modules are lead free components and are compatible with Pb Free soldering process.

HTU3500 series modules are free from Cr (6+), Cd and Hg.

^{**}JEDEC JESD22-A115 method (Machine Model ±200V)

PACKAGE OUTLINE

MECHANICAL CHARACTERISTICS: HTU3500 SERIES PACKAGE OUTLINE

Double coated adhesive tape could be used on plastic housing area (ref: 3M - 5925F) to fix parts

ORDERING INFORMATION

Product	Order Reference	Status
HTU3515WXGY	HPP831NXXX	In design
HTU3535WXGY	HPP831CXXX	Engineering part
HTU3535PBVM	HPP831A610	Serial part
HTU3535CH	HPP831AXXX	In design

Samples are available through MEASUREMENT SPECIALTIES web site:

http://www.meas-spec.com/humidity-sensors.aspx

神州融安科技(北京)有限公司

电话:010-62127688、82057633

地址:北京市海淀区花园路2号 牡丹科技楼B座三层B308室

网址: www. ronganchi na. cn

EUROPE

Measurement Specialties, Inc - MEAS France Impasse Jeanne Benozzi CS 83 163 31027 Toulouse Cedex 3

FRANCE

Tél: +33 (0)5 820 822 02 Fax: +33(0)5 820 821 51

Sales: humidity.sales@meas-spec.com

TE.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company

Measurement Specialties, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2015 TE Connectivity Ltd. family of companies All Rights Reserved.